
How To Use the INIT Shell with THINK Pascal

The INIT Shell consists of two THINK Pascal projects and associated source files. This note will
describe the overall organization of the INIT Shell, describe the purpose of each file in the
distribution, and illustrate how to assemble a fairly complex INIT using the shell.

The “loader” project is used to create the basic INIT file. As distributed, the code in this project
generates a “shell” INIT which simply displays its icon. You will add code to the “DoInstall”
procedure to execute various boot-time actions. Among these actions, you may wish to apply patch
traps or install VBL tasks; the “resident” project (which will be described below) has been provided
for this purpose. Any code which does not have to remain resident after INIT execution may reside
entirely within the “DoInstall” procedure.

The “resident” project is used to create code which will stay in the system heap after completion of
the INIT execution. Code which remains resident may be used for trap patches and VBL tasks. All
resident code loaded by an INIT created using the shell may share a common set of global
variables contained in a handle in the system heap. A comprehensive set of inline procedures and
functions, together with a special code header for the IRES resource, is provided to allow you to
patch traps using Pascal (even register traps). These special routines depend upon assumptions
about the state of the runtime stack. As such, they must be used at the main program level of the
patch code, and should never be called from within a subroutine of the patch code.

INITShellLoader.π You’ll use this to generate the base INIT file.
INITShellLoader.p The loader base code - you shouldn’t change this.
INITDoInstall.p The loader user code - you will change this.
INITShell.rsrc Additional resources for the the INIT file.

INITShellResident.π You’ll use a copy of this to generate each IRES resource.
INITShellResident.p The resident code - you will change this.
INITShellGlobals.p The globals for the resident code - you will change this.

The Loader Project

The loader project consists of the files INITShellLoader.π, INITShellLoader.p, INITDoInstall.p, and
INITShell.rsrc. The loader code contained in INITShellLoader.p is entirely self contained; you will
not need to modify it.

The loader code’s main routine constructs a Quickdraw environment on the stack, since an INIT
can’t use A5 globals. This Quickdraw environment is used by the INIT to draw its icon, and may be
used by any code you write to execute at load time.

The mouse button is tested before running your code. If the button is down, your code will not be
executed, however, a distinctive icon will be displayed to confirm that loading was skipped. The
method used to plot icons is compatible with the standard ShowInit routine written by Paul Snively,
Darin Adler, and Paul Mercer, but is written in Pascal rather than assembly language, and does not
plot color icons like the later versions of ShowInit. With the framework established here, color icon
support should be simple to add; I omitted it because I didn’t want to code something I couldn’t test.

Your code will be entirely contained in the DoInstall procedure found in INITDoInstall.p. DoInstall is
passed a single function parameter; this is a callback routine which provides access to various
support routines found in INITShellLoader.p. Although this method adds a bit of complexity to the
code, it provides two important benefits. First, it avoids problems with the circular dependencies
which would otherwise arise between the INITShellLoader and INITDoInstall units; this will be a big
help to anyone still using THINK Pascal 2.0, which doesn’t have the {$Z±} directive. Second, it will
allow you to compile the INITShellLoader unit as a library, since it does not depend upon anything
you will ever change; this is a good example of the kind of issue which faces folks who write runtime
libraries. Of course, if you changed this to a library, you’d have to change the name of the entry
point and have your code resource, with its own “main”, call the loader’s entry point.

DoInstall must alway call the callback routine with the ‘initCallback’ function code before doing
anything else. This gives the installer an opportunity to reserve space for its internal tables and for
any permanently resident variables your INIT may need.

Upon return from your DoInstall procedure, the loader mainline will check a couple of flags which
may have been altered by callback routines, and either display an icon which indicates that your
INIT loaded successfully, or display one of two failure icons (load failed due to a runtime error, or
load was not completed due to configuration) and undo any trap patches or VBL task installations
that your DoInstall procedure may have performed prior to discovering an error.

The loader mainline is able to undo trap patch and VBL task installations by providing callback
routines to not only perform the installations, but also to record enough information to be able to
restore a trap to its pre-patch state or remove a VBL task. Two of the parameters provided to the
callback routine with the ‘initCallback’ function code indicate how many patches and VBL tasks your
INIT will install. Failure to declare as many patches or VBLs as you actually install will only result in
an inability to automatically undo them in the event of an error; you may want to take advantage of
this if you’re doing something tricky where a simple restoration of the trap address or removal of the
VBL task won’t suffice.

The callback routine accepts a function code and three integer parameters. The function code
specifies what action will be taken by the loader. The following table indicates how the parameters
are used for each function code.

Function Param1 Param2 Param3
initCallback maxPatches maxVBLs globalsSize
setPatch resID trapWord –
setVBL resID count phase
failInstall – – –
doNotInstall – – –
suppressIcon – – –

The setPatch and setVBL functions both expect the resource ID of an ‘INIR’ resource which
contains the code to be installed as a patch or a VBL task, respectively. In the case of the setPatch
function, the second argument is the actual trap word which would be used to invoke the trap (not
the trap number!); the loader uses bit 11 of the trap word to distinguis between an OS trap and a
toolbox trap. The setVBL function expects the count and phase of the VBL task as the second and
third parameters.

If an error occurs while attempting to install a patch or a VBL task, the loader sets an internal failure
flag and ignores all subsequent requests to install patches and VBLs. Later, when your DoInstall
code returns, the loader notes the fact that an error had occurred and undoes the trap patches and
VBL installations that completed successfully. This saves you from writing a lot of error checking
and recovery code, and provides a uniform method for restoring much of the environment to its
original state in the event that your INIT must fail to load. This scheme could be readily extended to
support undoing of modifications to low-memory globals as well.

In the event that your DoInstall code may detect errors not directly related to patching traps or
installing VBL tasks, the failInstall callback code may be used to invoke the loader’s failure and
recovery mechanism. This has the same effect on subsequent attempts to install patches and
VBLs as a failure detected by the loader, and invokes the same recovery actions when your
DoInstall procedure returns.

When installation fails, the default action of the loader is to display ICN# 130 just before finishing.
In the event that you have a legitimate reason (such as an unsupported hardware configuration) for
not running your INIT, the doNotInstall callback function may be used to signal this situation to the
loader, which will display ICN# 131. If for some reason you don’t want to display an icon under
certain conditions, the suppressIcon callback function is provided.

While on the subject of icons, there are two other ICN#’s which may be displayed: 128 for a
successful load and 129 for a skipped load. Loading is skipped by the standard mechanism of
holding down the mouse button. The successful load icon is subject to the conditional suppression
provided by the suppressIcon callback. The DisplayIcon procedure is written to simply bail out if the
requested ICN# resource is not present, so you may simply omit any icon you never want to have
displayed.

[resident code, globals, header & header patching at load time]

